3.1651 \(\int \frac {1}{\sqrt {a+b x} \sqrt [4]{c+d x}} \, dx\)

Optimal. Leaf size=167 \[ \frac {4 (b c-a d)^{3/4} \sqrt {-\frac {d (a+b x)}{b c-a d}} E\left (\left .\sin ^{-1}\left (\frac {\sqrt [4]{b} \sqrt [4]{c+d x}}{\sqrt [4]{b c-a d}}\right )\right |-1\right )}{b^{3/4} d \sqrt {a+b x}}-\frac {4 (b c-a d)^{3/4} \sqrt {-\frac {d (a+b x)}{b c-a d}} \operatorname {EllipticF}\left (\sin ^{-1}\left (\frac {\sqrt [4]{b} \sqrt [4]{c+d x}}{\sqrt [4]{b c-a d}}\right ),-1\right )}{b^{3/4} d \sqrt {a+b x}} \]

[Out]

4*(-a*d+b*c)^(3/4)*EllipticE(b^(1/4)*(d*x+c)^(1/4)/(-a*d+b*c)^(1/4),I)*(-d*(b*x+a)/(-a*d+b*c))^(1/2)/b^(3/4)/d
/(b*x+a)^(1/2)-4*(-a*d+b*c)^(3/4)*EllipticF(b^(1/4)*(d*x+c)^(1/4)/(-a*d+b*c)^(1/4),I)*(-d*(b*x+a)/(-a*d+b*c))^
(1/2)/b^(3/4)/d/(b*x+a)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.19, antiderivative size = 167, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 7, integrand size = 19, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.368, Rules used = {63, 307, 224, 221, 1200, 1199, 424} \[ \frac {4 (b c-a d)^{3/4} \sqrt {-\frac {d (a+b x)}{b c-a d}} E\left (\left .\sin ^{-1}\left (\frac {\sqrt [4]{b} \sqrt [4]{c+d x}}{\sqrt [4]{b c-a d}}\right )\right |-1\right )}{b^{3/4} d \sqrt {a+b x}}-\frac {4 (b c-a d)^{3/4} \sqrt {-\frac {d (a+b x)}{b c-a d}} F\left (\left .\sin ^{-1}\left (\frac {\sqrt [4]{b} \sqrt [4]{c+d x}}{\sqrt [4]{b c-a d}}\right )\right |-1\right )}{b^{3/4} d \sqrt {a+b x}} \]

Antiderivative was successfully verified.

[In]

Int[1/(Sqrt[a + b*x]*(c + d*x)^(1/4)),x]

[Out]

(4*(b*c - a*d)^(3/4)*Sqrt[-((d*(a + b*x))/(b*c - a*d))]*EllipticE[ArcSin[(b^(1/4)*(c + d*x)^(1/4))/(b*c - a*d)
^(1/4)], -1])/(b^(3/4)*d*Sqrt[a + b*x]) - (4*(b*c - a*d)^(3/4)*Sqrt[-((d*(a + b*x))/(b*c - a*d))]*EllipticF[Ar
cSin[(b^(1/4)*(c + d*x)^(1/4))/(b*c - a*d)^(1/4)], -1])/(b^(3/4)*d*Sqrt[a + b*x])

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 221

Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> Simp[EllipticF[ArcSin[(Rt[-b, 4]*x)/Rt[a, 4]], -1]/(Rt[a, 4]*Rt[
-b, 4]), x] /; FreeQ[{a, b}, x] && NegQ[b/a] && GtQ[a, 0]

Rule 224

Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> Dist[Sqrt[1 + (b*x^4)/a]/Sqrt[a + b*x^4], Int[1/Sqrt[1 + (b*x^4)
/a], x], x] /; FreeQ[{a, b}, x] && NegQ[b/a] &&  !GtQ[a, 0]

Rule 307

Int[(x_)^2/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[-(b/a), 2]}, -Dist[q^(-1), Int[1/Sqrt[a + b*x^
4], x], x] + Dist[1/q, Int[(1 + q*x^2)/Sqrt[a + b*x^4], x], x]] /; FreeQ[{a, b}, x] && NegQ[b/a]

Rule 424

Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Simp[(Sqrt[a]*EllipticE[ArcSin[Rt[-(d/c)
, 2]*x], (b*c)/(a*d)])/(Sqrt[c]*Rt[-(d/c), 2]), x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && GtQ[
a, 0]

Rule 1199

Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (c_.)*(x_)^4], x_Symbol] :> Dist[d/Sqrt[a], Int[Sqrt[1 + (e*x^2)/d]/Sqrt
[1 - (e*x^2)/d], x], x] /; FreeQ[{a, c, d, e}, x] && NegQ[c/a] && EqQ[c*d^2 + a*e^2, 0] && GtQ[a, 0]

Rule 1200

Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (c_.)*(x_)^4], x_Symbol] :> Dist[Sqrt[1 + (c*x^4)/a]/Sqrt[a + c*x^4], In
t[(d + e*x^2)/Sqrt[1 + (c*x^4)/a], x], x] /; FreeQ[{a, c, d, e}, x] && NegQ[c/a] && EqQ[c*d^2 + a*e^2, 0] &&
!GtQ[a, 0]

Rubi steps

\begin {align*} \int \frac {1}{\sqrt {a+b x} \sqrt [4]{c+d x}} \, dx &=\frac {4 \operatorname {Subst}\left (\int \frac {x^2}{\sqrt {a-\frac {b c}{d}+\frac {b x^4}{d}}} \, dx,x,\sqrt [4]{c+d x}\right )}{d}\\ &=-\frac {\left (4 \sqrt {b c-a d}\right ) \operatorname {Subst}\left (\int \frac {1}{\sqrt {a-\frac {b c}{d}+\frac {b x^4}{d}}} \, dx,x,\sqrt [4]{c+d x}\right )}{\sqrt {b} d}+\frac {\left (4 \sqrt {b c-a d}\right ) \operatorname {Subst}\left (\int \frac {1+\frac {\sqrt {b} x^2}{\sqrt {b c-a d}}}{\sqrt {a-\frac {b c}{d}+\frac {b x^4}{d}}} \, dx,x,\sqrt [4]{c+d x}\right )}{\sqrt {b} d}\\ &=-\frac {\left (4 \sqrt {b c-a d} \sqrt {\frac {d (a+b x)}{-b c+a d}}\right ) \operatorname {Subst}\left (\int \frac {1}{\sqrt {1+\frac {b x^4}{\left (a-\frac {b c}{d}\right ) d}}} \, dx,x,\sqrt [4]{c+d x}\right )}{\sqrt {b} d \sqrt {a+b x}}+\frac {\left (4 \sqrt {b c-a d} \sqrt {\frac {d (a+b x)}{-b c+a d}}\right ) \operatorname {Subst}\left (\int \frac {1+\frac {\sqrt {b} x^2}{\sqrt {b c-a d}}}{\sqrt {1+\frac {b x^4}{\left (a-\frac {b c}{d}\right ) d}}} \, dx,x,\sqrt [4]{c+d x}\right )}{\sqrt {b} d \sqrt {a+b x}}\\ &=-\frac {4 (b c-a d)^{3/4} \sqrt {-\frac {d (a+b x)}{b c-a d}} F\left (\left .\sin ^{-1}\left (\frac {\sqrt [4]{b} \sqrt [4]{c+d x}}{\sqrt [4]{b c-a d}}\right )\right |-1\right )}{b^{3/4} d \sqrt {a+b x}}+\frac {\left (4 \sqrt {b c-a d} \sqrt {\frac {d (a+b x)}{-b c+a d}}\right ) \operatorname {Subst}\left (\int \frac {\sqrt {1+\frac {\sqrt {b} x^2}{\sqrt {b c-a d}}}}{\sqrt {1-\frac {\sqrt {b} x^2}{\sqrt {b c-a d}}}} \, dx,x,\sqrt [4]{c+d x}\right )}{\sqrt {b} d \sqrt {a+b x}}\\ &=\frac {4 (b c-a d)^{3/4} \sqrt {-\frac {d (a+b x)}{b c-a d}} E\left (\left .\sin ^{-1}\left (\frac {\sqrt [4]{b} \sqrt [4]{c+d x}}{\sqrt [4]{b c-a d}}\right )\right |-1\right )}{b^{3/4} d \sqrt {a+b x}}-\frac {4 (b c-a d)^{3/4} \sqrt {-\frac {d (a+b x)}{b c-a d}} F\left (\left .\sin ^{-1}\left (\frac {\sqrt [4]{b} \sqrt [4]{c+d x}}{\sqrt [4]{b c-a d}}\right )\right |-1\right )}{b^{3/4} d \sqrt {a+b x}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 0.02, size = 71, normalized size = 0.43 \[ \frac {2 \sqrt {a+b x} \sqrt [4]{\frac {b (c+d x)}{b c-a d}} \, _2F_1\left (\frac {1}{4},\frac {1}{2};\frac {3}{2};\frac {d (a+b x)}{a d-b c}\right )}{b \sqrt [4]{c+d x}} \]

Antiderivative was successfully verified.

[In]

Integrate[1/(Sqrt[a + b*x]*(c + d*x)^(1/4)),x]

[Out]

(2*Sqrt[a + b*x]*((b*(c + d*x))/(b*c - a*d))^(1/4)*Hypergeometric2F1[1/4, 1/2, 3/2, (d*(a + b*x))/(-(b*c) + a*
d)])/(b*(c + d*x)^(1/4))

________________________________________________________________________________________

fricas [F]  time = 0.48, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {\sqrt {b x + a} {\left (d x + c\right )}^{\frac {3}{4}}}{b d x^{2} + a c + {\left (b c + a d\right )} x}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(b*x+a)^(1/2)/(d*x+c)^(1/4),x, algorithm="fricas")

[Out]

integral(sqrt(b*x + a)*(d*x + c)^(3/4)/(b*d*x^2 + a*c + (b*c + a*d)*x), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{\sqrt {b x + a} {\left (d x + c\right )}^{\frac {1}{4}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(b*x+a)^(1/2)/(d*x+c)^(1/4),x, algorithm="giac")

[Out]

integrate(1/(sqrt(b*x + a)*(d*x + c)^(1/4)), x)

________________________________________________________________________________________

maple [F]  time = 0.08, size = 0, normalized size = 0.00 \[ \int \frac {1}{\sqrt {b x +a}\, \left (d x +c \right )^{\frac {1}{4}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(b*x+a)^(1/2)/(d*x+c)^(1/4),x)

[Out]

int(1/(b*x+a)^(1/2)/(d*x+c)^(1/4),x)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{\sqrt {b x + a} {\left (d x + c\right )}^{\frac {1}{4}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(b*x+a)^(1/2)/(d*x+c)^(1/4),x, algorithm="maxima")

[Out]

integrate(1/(sqrt(b*x + a)*(d*x + c)^(1/4)), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {1}{\sqrt {a+b\,x}\,{\left (c+d\,x\right )}^{1/4}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/((a + b*x)^(1/2)*(c + d*x)^(1/4)),x)

[Out]

int(1/((a + b*x)^(1/2)*(c + d*x)^(1/4)), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{\sqrt {a + b x} \sqrt [4]{c + d x}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(b*x+a)**(1/2)/(d*x+c)**(1/4),x)

[Out]

Integral(1/(sqrt(a + b*x)*(c + d*x)**(1/4)), x)

________________________________________________________________________________________